
Chapter 7

Working with numbers

7.1 Fitting arithmetic into Racket syntax

The syntax rule we’ve used most heavily thus far is Rule 2: to use a function, type

( function-name argument ...)

Racket’s built-in arithmetic operations use the exact same rule, which may make arith-
metic expressions in Racket look a little unfamiliar, but has the advantage that all func-
tions, whether they involve pictures, numbers, strings, etc. use the same syntax rule.

Most of Racket’s built-in arithmetic and mathematical functions have exactly the
name you would expect: + for addition, − for subtraction, ∗ for multiplication, / for
division, sin for sine, etc..

Worked Exercise 7.1.1 Write a Racket expression to represent the standard arith-
metic expression 3 + 4.

Solution: The operation we need to perform is +, so (as always in Racket) it goes after
a left-parenthesis, before the things it’s supposed to operate on:

(+ 3 4)

Of course, we know the answer should be 7, so we might even write

(+ 3 4) "should be 7"

or

(check-expect (+ 3 4) 7)

Test this (e.g. by typing it into the Interactions pane and hitting ENTER) and confirm
that the answer actually is 7.

Exercise 7.1.2 Write a Racket expression to represent the standard arithmetic ex-
pression 5 · 3. As always, test to make sure the answer is what you expect.

Hint: Racket, like most programming languages, uses an asterisk (*) to represent
multiplication.

Exercise 7.1.3 Write a Racket expression to represent the standard arithmetic ex-
pression 7− 4.
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110 CHAPTER 7. WORKING WITH NUMBERS

(Did you get the arguments in the right order? The value should be 3, not -3.)

Exercise 7.1.4 Write a Racket expression to represent the standard arithmetic ex-
pression 3 + (5 · 2).

Hint: Remember that both operations have to follow Syntax Rule 2: they each go after
a left-parenthesis, before whatever they’re supposed to work on. If you get wrong answers,
use the Stepper to watch what’s going on inside the expression, step by step.

Exercise 7.1.5 Write a Racket expression to represent the standard arithmetic ex-
pression (1 + 2) · (3 + 4).

Exercise 7.1.6 Write a Racket expression to represent the standard arithmetic ex-
pression

√
4 + 5.

Hint: Since you can’t type the
√

symbol into DrRacket, the square-root function is
spelled sqrt.

The operations of “adding one” and “subtracting one” are so common in programming
that Racket provides built-in functions add1 and sub1 for them.

Practice Exercise 7.1.7 Write some expressions using add1 and sub1. Write equiva-
lent expressions using +, −, and 1.

Exercise 7.1.8 Make up some more arithmetic expressions and convert them to Racket.
Figure out the right answers, type the expressions into DrRacket, and see whether Dr-
Racket agrees. If not, use the Stepper to figure out what went wrong.

7.2 Variables and numbers

You already know how to define a variable to hold a picture, using Syntax Rule 4, and
refer to variables using Syntax Rule 3. You can define variables to hold numbers, and use
them in subsequent expressions, in exactly the same way:

(define age 20)

(define eggs-per-carton 12)

(check-expect (+ age 1) 21)

(check-expect (* 3 eggs-per-carton) 36)

Worked Exercise 7.2.1 Define a variable named bignum with the value 1234567890.
Compute the value of bignum2.

Solution: The definition is simply

(define bignum 1234657890)

The expression bignum2 really means two copies of bignum multiplied together, so we
would write

(* bignum bignum)

Note that these can both be in the Definitions pane, with the definition first, or
both can be in the Interactions pane, with the definition first, or the definition can be
in the Definitions pane and the formula in the Interactions pane. Try each of these

possibilities.
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Exercise 7.2.2 Define (in the Definitions pane) a variable named x with the value 4.
Then write an expression (in the Definitions pane) to represent the “standard” alge-
braic expression

3x+ 2

What “should” the answer be? Try it and see whether it worked as you expect.
Change the value of x to 5 in the Definitions pane and predict what the answer should

be now. Try it and see whether you were right.

Hint: Remember that 3x in “standard” arithmetic really means 3 times x.

Exercise 7.2.3 Write an expression in the definitions pane to represent the “stan-
dard” algebraic expression

fnord+ snark/boojum

Test your expression by defining the variable fnord to be 5, snark to be 12, and boojum

to be -4. What should the right answer be?
Test your expression again by defining the variables with different values, and predicting
what the right answer should be.

Exercise 7.2.4 Define (in the Definitions pane) two variables distance and time to
represent how long you spent on a trip, and how far you travelled. Then write an

expression (again in the Definitions pane) for your average speed (i.e. distance divided
by time); hit “Run” and make sure the answer comes out the way you expected.

Change the values of time and distance, but don’t change the expression. Hit “Run”
and make sure the answer is correct for the new time and distance.

SIDEBAR:

Time and distance, of course, are measured in units, e.g. hours and kilometers respec-
tively. But a Racket numeric variable holds only a number ; you have to remember
what unit is associated with which variable.

Exercise 7.2.5 Make up some more algebraic expressions and convert them to Racket.
Figure out the right answers, type them into DrRacket, and see whether DrRacket agrees.

If you’re comfortable with all of those, here’s a trickier one:

Exercise 7.2.6 Write an expression in the definitions pane to represent the “stan-
dard” algebraic expression

(−b) +
√

(b2)− 4ac

2a
Test your expression by defining a to be 1, b to be -2, and c to be -3; the answer should
be 3.
Test your expression again by defining the variables with different values, and predicting
what the right answer should be.

Exercise 7.2.7 Develop a function named simpler-bullseye 1 that’s like the bullseye
program of exercise 5.3.5, but taking in only one number, representing the radius of the
outer ring. The radius of the inner disk should be half as large.

Hint: The only new challenge is computing “half the radius”, which you didn’t know
how to do before.

1This function is named simpler-bullseye because it’s simpler to use — not necessarily simpler to

write. There’s often a trade-off between those two goals!
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7.3 Why prefix notation is your friend

Racket’s convention, putting the operation always before whatever it works on, is called
prefix notation2. By contrast, the arithmetic notation you learned in grade school has
a few “prefix operators” (e.g. negation, sin, cos,

√
. . .) that go before their arguments,

together with “infix operators” (e.g. +, −, ·, /) that go between their arguments.
An advantage of Racket’s notation (aside from consistency) is that operations like

+, ∗, etc. can easily take more than two parameters. For example, consider the infix
expression

1 + 2 + 3 + 4 + 5

We could convert this to Racket as

(+ 1 (+ 2 ( + 3 (+ 4 5))))

or

(+ (+ (+ (+ 1 2) 3) 4) 5)

or various other ways, but since + can take more than two parameters, we could write
it more simply as

(+ 1 2 3 4 5)

which is actually shorter than its infix form because we don’t have to keep repeating the
+ sign.

Exercise 7.3.1 Write a Racket expression, as simple as possible, to represent
the standard arithmetic expression 3 · 5 · 2

Exercise 7.3.2 Write a Racket expression, as simple as possible, to represent
the standard arithmetic expression (2 · 3 · 4) + 5 + (7− 4)

Worked Exercise 7.3.3 Write a Racket expression to represent the standard arith-
metic expression 3 + 4 · 5.

Solution: To solve this, you first need to be sure what the “standard” arithmetic ex-
pression means. There are actually two possible ways to read this: “add 3 and 4, then
multiply by 5,” or “add 3 to the result of multiplying 4 by 5,” and these two interpre-
tations lead to different answers: 35 and 23 respectively. This is called an ambiguous
expression. Which interpretation is right?

By convention, “standard” arithmetic uses precedence rules (or “order of operations”
rules) to resolve this: parentheses, exponentiation, multiplication and division, addition
and subtraction (PEMDAS; you may have heard the mnemonic “Please Excuse My Dear
Aunt Sally”). According to these rules, multiplication happens before addition, so the
second reading is correct, and the right answer should be 23, not 35.

Now that we’ve agreed that the original expression means 3 + (4 ∗ 5), or (in English)
“add 3 to the result of multiplying 4 by 5,” writing it in Racket is straightforward:

(+ 3 (* 4 5))

But what if we had meant the other interpretation, e.g. if the original expression had
been (3 + 4) · 5? The Racket expression would be

2or sometimes Polish notation, because it was invented by a Polish mathematician named Jan

 Lukasiewicz.
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(* (+ 3 4) 5)

Notice that this expression looks completely different ; it cannot possibly be confused with
(+ 3 (* 4 5)) ! An arithmetic expression in prefix notation doesn’t need precedence
rules; it has no ambiguity, hence no need to resolve the ambiguity.

In other words, if you had learned Racket in elementary school instead of “standard”
arithmetic notation, you would never have heard of My Dear Aunt Sally.

Worked Exercise 7.3.4 Write a Racket expression to represent the standard arith-
metic expression 3 · −4.

Solution: The “negation” operator follows the same syntax rule as everything else in
Racket: it goes after a left parenthesis, before whatever it applies to. So we could write

(* 3 (- 4))

However, negative numbers are so common that Racket allows you to type them directly:
if you put the − sign immediately before the number (with no space in between), the
number is treated as negative. So a shorter way of writing the expression would be

(* 3 -4)

7.4 A recipe for converting from infix to prefix

If you did the problems in the previous sections with no difficulty, you can probably
skip this section. If not, here’s a step-by-step technique that may help in translating an
expression in “standard” infix algebraic notation into Racket’s prefix notation:

1. Expand all the abbreviations and special mathematical symbols. For example, 3x
really stands for 3 * x; x2 really stands for x * x; and

√
3x uses a symbol that we

don’t have on the computer keyboard, so we’ll write it as sqrt(3 * x).

2. Fully parenthesize everything, using the usual order-of-operations rules (PEMDAS:
parentheses, exponents, multiplication, division, addition, subtraction). By the end
of this step, the number of operators, the number of left parentheses, and the number
of right parentheses should all be the same. Furthermore, each pair of parentheses
should be associated with exactly one operator and its operands; if I point at any
operator, you can point to its left-parenthesis and its right-parenthesis.

3. Move each operator to just after its left-parenthesis, leaving everything else in the
same order it was in before.

This may be clearer with some examples:

Worked Exercise 7.4.1 Write a Racket expression to represent the standard arith-
metic expression 3 + x.

Solution: There’s nothing to do in Step 1.
Step 2 adds parentheses to get (3 + x).
In Step 3, the + sign moves to just after its left-parenthesis:

after which we can just read off the answer (+ 3 x).
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Worked Exercise 7.4.2 Write a Racket expression to represent the standard arith-
metic expression 3 · 4 + 5.

Solution: In step 1, we replace the · with *.
Step 2 tells us to “fully parenthesize, using order of operations”; since multiplication

comes before addition, we rewrite the expression as (3 + (4 * 5)). Note that there are
two operators (+ and *), two left parentheses, and two right parentheses; the + is directly
inside the outer pair of parentheses, while the * is directly inside the pair enclosing 4 and
5.

In step 3, we move each operator to just after its own left parenthesis:

The left parenthesis belonging to + is the one at the beginning, so and the left parenthesis
belonging to ∗ is the one before 4, so we get (+ 3 (* 4 5)), which is a correct Racket
expression.

Worked Exercise 7.4.3 Write a Racket expression to represent the standard arith-
metic expression 5− 6− 2.

Solution: In Step 1, there’s nothing to do.
In Step 2, we could parenthesize it as ((5 − 6) − 2, or as (5 − (6 − 2)). These two

interpretations give different answers: the first produces −3, while the second produces 1.
In other words, this expression too is ambiguous. By convention, “standard” arithmetic
says that the − operator is applied from left to right, as though it were parenthesized as
((5− 6)− 2). Note that the first − sign is associated with the inner pair of parentheses,
and the second is associated with the outer pair.

Step 3 then moves each − sign to just after its own left parenthesis:

(- (- 5 6) 2)

This is a perfectly good, correct expression, but as we’ve already seen, Racket allows
arithmetic operators to work on more than one operand, so we could rewrite it shorter as

(- 5 6 2)

Worked Exercise 7.4.4 Write a Racket expression to represent the standard arith-
metic expression sinx.

Solution: There’s nothing to do in step 1. As for step 2, in “standard” algebraic notation,
named functions like sin are customarily placed in front of their arguments, often with the
arguments surrounded by parentheses. So the “standard” way to write this, completing
step 2, would be sin(x).

In step 3, we move the sin to just after its left parenthesis (which it is currently
outside): (sin x).

Exercise 7.4.5 Write a Racket expression to represent the standard arithmetic ex-
pression

√
3x.
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Worked Exercise 7.4.6 Write a Racket expression to represent the standard arith-
metic expression 7x− 3+x

y+2
.

Solution: Step 1 expands the 7x to 7 ∗ x.
Step 2 adds parentheses around 3+x, and around y+2, and around the whole fraction,

and around 7 ∗ x, and around the whole expression, to get

((7 ∗ x)− ((3 + x)/(y + 2)))

Step 3 moves each of the five operators to just after its own left parenthesis:

Finally, we can just read this from left to right and get
(- (* 7 x) (/ (+ 3 x) (+ y 2))).

Now try the exercises from the previous sections again, using this technique.

7.5 Kinds of numbers

7.5.1 Integers

All the examples so far deal with integers : the counting numbers 0, 1, 2, 3, . . . and their
negatives. Racket is very good at dealing with integers: consider

(* 1234567890 1234567890 1234567890)

which should come out 1881676371789154860897069000.
SIDEBAR:

If you multiplied three copies of 1234567890 in Java, you would get a negative number!
This is because Java, C, C++, and most other programming languages use limited-
range integers, and once the answers get much beyond two billion, they are no longer
guaranteed to be correct. In fact, if you tried it in C or C++, you could get different
answers on different computers! In Racket, if you do a computation resulting in a
500-digit integer, every one of those digits will be correct. On the other hand, we
pay a price for correctness: arithmetic in Racket is slightly slower than in Java, C,
or C++.

7.5.2 Fractions

But many calculations in the real world go beyond the integers, using fractions, irra-
tional numbers, complex numbers, etc.. Consider the expression (/ 4 11). In Racket,
the answer will print out either in fractional form 4/11 or as a repeating decimal 0.3̄6
depending on how DrRacket is set up. (If you’d like to experiment with this, go to “Lan-
guage”, “Choose Language”, “Show Details”, and find the radio buttons labelled “Mixed
fractions” and “Repeating decimals”.)

Racket does arithmetic on fractions the way you learned in grade-school, complete
with reduction to lowest terms: for example, (+ (/ 2 3) (/ 1 4)) comes out as 11/12
or 0.916̄, and (- (/ 2 3) (/ 1 6)) comes out as 1/2 or 0.5.
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Again, fractions are so common that Racket allows you to type them directly, without
the parentheses: if you type two integers separated by a “/”, with no spaces in between,
it will treat the whole thing as one fraction; thus the two preceding examples could be
written more briefly as (+ 2/3 1/4) and (- 2/3 1/6) respectively.

7.5.3 Inexact numbers

Some numbers cannot be represented even by fractions, e.g.
√
2. Try the expression (sqrt

2) and you’ll get the answer #i1.4142135623730951. The “#i” at the beginning tells
you that this is an “inexact” number, only an approximation to the true square root of 2.
You can see this first-hand by multiplying (sqrt 2) by itself; you should get something
very close, but not quite equal, to 2. Likewise, most expressions involving trigonometric
functions (sin, cos, tan, etc.) produce inexact answers.

This poses a problem for writing test cases. The check-expect function expects the
answer to be exactly what you said it would be, so

(check-expect (* (sqrt 2) (sqrt 2)) 2)

will fail. When we’re working with inexact numbers, we instead use a built-in function
named check-within, which takes in three numbers: the actual answer, the right answer,
and “how close” the answer needs to be in order to pass the test. Thus

(check-within (* (sqrt 2) (sqrt 2)) 2 0.0001)

tests whether (* (sqrt 2) (sqrt 2)) is within 0.0001 of the “right answer”, 2, and it
should pass.

SIDEBAR:

In most programming languages, division on integers does one of two peculiar things.
Either it produces an inexact number, so for example 49 ∗ (1/49) is almost but not
quite equal to 1, or it does “integer division”, rounding down to make the answer an
integer, so 5/3 is 1 “with a remainder of 2”, and 3 ∗ (5/3) is 3 rather than 5. The
latter can be useful sometimes, and Racket allows you to do it using the quotient and
remainder functions, but the plain-old division operator produces fractions which
are exactly correct if its arguments were exactly correct.

Exercise 7.5.1 Write a Racket expression to represent the standard arithmetic ex-
pression

√

4 + (2 · 3). Be sure to write a test case!

Hint: The answer should come out close to 3.162.

SIDEBAR:

Mathematicians also talk about something called complex numbers, a system in which
negative numbers do have square roots. Racket supports complex numbers, which
are written like 3+4i, again with no spaces in between. However, we won’t need
complex numbers in this book.

7.6 Contracts for built-in arithmetic functions

We’ve seen that to really know how to use a function, you need to know its contract,
i.e. how many arguments of what types in what order it accepts, and what type of answer
it returns.
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Worked Exercise 7.6.1 Write the contract for the built-in + operator.

Solution: It works on two or more numbers and returns a number, so we can write

; + : number number ...-> number

Exercise 7.6.2 Write the contracts for the built-in −, ∗, /, and sqrt functions.

7.7 Writing numeric functions

You can define functions to do numeric computations in the same way that you defined
functions producing pictures in Chapter 4. As always, you should still use the design
recipe of Chapter 5. In fact, it’ll be a bit easier because for the “right answers”, you can
just compute the right answer in your head or on a calculator and type in the number,
rather than coming up with a Racket expression that builds the correct picture.

Worked Exercise 7.7.1 Develop a function that takes in a number and returns its
cube, i.e. three copies of it multiplied together.

Solution: Contract: The obvious name for the function is cube. It takes in a number
and returns a number, so the contract looks like

; cube : number -> number

The function’s purpose is obvious from its name, so we’ll skip the purpose statement.
Examples: Any number should work. Let’s start with really easy numbers, for which

we know the right answers, and work up to harder ones for which we may only be able
to estimate the right answers. For example, 203 = 8000, so 193 must be a little less.

(check-expect (cube 0) 0)

(check-expect (cube 2) 8)

(check-expect (cube -3) -27)

(check-expect (cube 2/3) 8/27)

(check-within (cube (sqrt 2)) 2.828 0.01)

(cube 19) "should be a little under 8000"

(cube bignum) "should be 28-29 digits long"

; assuming bignum is defined to be 1234657890

Note that we’ve picked several things that might be “special cases”: 0, both positive and
negative numbers, a fraction, etc. If the function works correctly on all of these, we can
reasonably expect it to work on all inputs.

Note also that we’ve used check-expect where we know the exact right answer,
check-within where the answer is inexact but we know a good approximation to it, and
"should be" where we only know a rough criterion for “is this a reasonable answer?”

Skeleton: The contract gives us much of the information, but we still need to choose
a name for the parameter. It’s a number, and doesn’t necessarily “mean” anything more
specific, so I’ll choose num. The skeleton then looks like

(define (cube num)

...)
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Inventory: We have only one parameter, so we’ll add it in a comment:

(define (cube num)

; num number

...)

Body: We know that the body will be an expression involving num. To get its cube,
we simply need to multiply together three copies of num:

(define (cube num)

; num number

(* num num num)

)

Was it obvious to you that the right expression was (* num num num)? Perhaps, but
not all functions are this simple; we can’t rely on “seeing” what the right expression must
be. So what would we do if we got to this point and didn’t “see” the answer? Remember
the Inventory with Values technique in Chapter 5: add a line to the inventory labelled
“should be”, pick a not-too-simple example, and write down next to each inventory item
its value for this example. Let’s suppose we picked the fourth example, (cube 2/3). Our
inventory-with-values would look like

(define (cube num)

; num number 2/3

; should be number 8/27

...)

Now, look at the “should be” value and try to figure out how to get it from the values
above. The simplest way to get 8/27 from 2/3 is to multiply together three copies of 2/3,
which is the value of the variable num, so we would come up with the body expression (*

num num num), exactly as before.

The Definitions pane should now look like Figure 7.1.

Figure 7.1: Definition of the cube function
(define bignum 1234567890)

; cube : number -> number

(check-expect (cube 0) 0)

(check-expect (cube 2) 8)

(check-expect (cube -3) -27)

(check-expect (cube 2/3) 8/27)

(check-within (cube (sqrt 2)) 2.828 0.01)

(define (cube num)

; num number 2/3

; should be number 8/27

(* num num num)

)

(cube 19) "should be a little under 8000"

(cube bignum) "should be 28-29 digits long"
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Note that the check-expect and check-within test cases can appear either before
the function definition or after it; “should be”-style test cases must appear after the
definition, or DrRacket will complain that you’re calling a function you haven’t defined
yet.

Testing: Hit “Run” and look at the results. If any of the actual results doesn’t match
what they “should be”, something is wrong.

Exercise 7.7.2 Develop a function named rect-perimeter that takes in the width
and height of a rectangle, and returns its perimeter.

Exercise 7.7.3 Develop a function named circle-perimeter that takes in the radius
of a circle, and returns its perimeter.

Hint: The formula for the perimeter of a circle is approximately 3.14 · 2 · r, where r is
the radius. Since the 3.14 and 2 are “always the same”, they shouldn’t be parameters to
the function.

Exercise 7.7.4 Develop a function named area-of-circle that takes in the radius
of a circle and computes its area.

Hint: The formula for the area of a circle is approximately 3.14 ·r2, where r is the radius.

Worked Exercise 7.7.5 Consider the colored rings

and .
Design a function named area-of-ring which computes the area of such a ring.

Solution:

Contract: The assignment doesn’t actually say what the function should take in, so we
need to figure that out. The area clearly doesn’t depend on the color or location of the
ring, but does depend on the size of both the inner and outer circles. How do we usually
specify the size of a circle? Most often with its radius. So this function needs to take in
two numbers: the inner radius and the outer radius. It doesn’t make sense for the inner
radius to be larger than the outer radius, so let’s point that out.

; area-of-ring : number (inner-radius)

; number (outer-radius) -> number

; assumes inner-radius ≤ outer-radius

Examples: As usual, we’ll start with really easy ones that we can solve in our heads,
then build up to more complicated ones. We’ll also throw in some “special cases”: one
or both of the radii are zero, the two radii are equal, etc.

Before we can write down what the answers “should be”, we need to know how to
find the right answers ourselves. So let’s imagine we were cutting out a “ring” in paper.
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We would probably start by cutting a circle with the outer radius, then marking another
circle with the inner radius and the same center, cutting that out, and throwing away the
inner part. So the area of what we have left is the area of a circle with the outer radius,
minus the area of a circle with the inner radius.

(check-expect (area-of-ring 0 0) 0)

(check-expect (area-of-ring 2 2) 0)

(check-within (area-of-ring 0 1) 3.14 0.01)

(check-within (area-of-ring 0 2) 12.56 0.01)

(check-within (area-of-ring 1 2) 9.42 0.01)

; 4*3.14 for the outer circle, minus 3.14 for the inner circle

(check-within (area-of-ring 2 5) 65.94 0.01)

; 25*3.14 for the outer circle, minus 4*3.14 for the inner circle

Skeleton: The contract already tells us the name of the function and of its two
parameters, so we can immediately write

(define (area-of-ring inner-radius outer-radius)

...)

Inventory: There are two parameters, both of type number, and we know the “magic
number” 3.14 is involved, so. . .

(define (area-of-ring inner-radius outer-radius)

; inner-radius number

; outer-radius number

; 3.14 magic number

...)

Body: If you already see what to do next, great. But for practice (or if you don’t
already see what to do next), let’s add a “should be” line and some values to this inventory.
We need a “not too simple” example, which rules out those with a zero in them, and those
with inner and outer radius the same. Let’s try the example (area-of-ring 1 2).

(define (area-of-ring inner-radius outer-radius)

; inner-radius number 1

; outer-radius number 2

; 3.14 magic number 3.14

; should be number 9.42

...)

Now how could you get the “right answer” 9.42 from the values above it? Obviously, the
value that most resembles it is 3.14; the right answer in this case is exactly 3 ·3.14. Where
did the 3 come from? The most obvious way is from 1 + 2, so we might guess that the
expression is (* 3.14 (+ inner-radius outer-radius)). This seems a bit too simple,
since it doesn’t use the area formula from before. Still, we can type this in and test it,
and find that although it works for this test case, it fails two of the six test cases.

We’ve been led astray by picking too simple a test case. If we had picked (area-of-ring
2 5) instead, we would have had a “right answer” of 65.94, which is 21 times 3.14. It
may not be obvious where the 21 came from, but it’s certainly not (+ inner-radius

outer-radius)! And we could reasonably figure out that the 21 comes from 52 − 22 =
25− 4, which would lead us to the correct formula
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(* 3.14 (- (* outer-radius outer-radius) (* inner-radius inner-radius)))

If we type this in as the function body, it passes all the tests.
Another way to approach the problem would be to remember that the area of the ring

is the area of the larger circle minus the area of the smaller circle; we can use the formula
for the area of a circle twice to get
(- (* 3.14 outer-radius outer-radius) (* 3.14 inner-radius inner-radius))

which is equivalent to the answer above.
But once we’ve recognized that we need to compute the areas of circles, why not re-use

the area-of-circle function we already wrote to do this job?

(define (area-of-ring inner-radius outer-radius)

; inner-radius number

; outer-radius number

(- (area-of-circle outer-radius)

(area-of-circle inner-radius))

)

This is much shorter and clearer.
Testing: Assuming you’ve typed all of this into the Definitions pane, you should be

able to hit “Run” and check the results.

Improving the program: In fact, a more accurate formula for the area of a circle
is π · r2, where π is a special number, approximately 3.141592653589793. In fact, π is so
special that it comes predefined in Racket: there’s a variable named pi with this value.
We can use this to make area-of-circle more accurate, by replacing the 3.14 in its
body with pi. This built-in variable pi is inexact, so you’ll need to write your test cases
using check-within.

Practice Exercise 7.7.6 Replace the 3.14 in area-of-circle with pi, and change
the test cases for both area-of-circle and area-of-ring appropriately. Make sure both
functions still pass all their test cases.

Recall that we defined area-of-ring by re-using area-of-circle. Since we’ve just
made area-of-circle more accurate, area-of-ring is now automatically more accurate
too, without changing anything in its definition! This is one of the powerful benefits of
re-using one function in writing another.

Exercise 7.7.7 Develop a function named hours->minutes that takes in a number
of hours, and returns how many minutes are in that many hours.

Hint: You can name the parameter anything you wish, but it’s best to give it a name
that tells what it means. In this case, the input represents a number of hours, so hours

would be a good name.

Exercise 7.7.8 Develop a function named days->hours that takes in a number of
days, and returns how many hours are in that many days.

Exercise 7.7.9 Develop a function named days->minutes that takes in a number of
days, and returns how many minutes are in that many hours.

Hint: By re-using previously-written functions, you should be able to write this function
with no numbers in the definition (although you’ll need numbers in the examples).
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Exercise 7.7.10 Develop a function named dhm->minutes that takes in three num-
bers: how many days, how many hours, and how many minutes, in that order, and returns
the total number of minutes.

Hint: Again, you should be able to write this with no numbers in the definition.

Exercise 7.7.11 Develop a function named feet->inches that takes in a number of
feet, and returns the number of inches in that many feet.

Exercise 7.7.12 Develop a function named total-inches that takes in a length in
feet and inches (e.g. 5 feet, 2 inches) and returns the number of inches in that length (in
this example, 62).

Hint: Look for opportunities to re-use functions you’ve already written.

Practice Exercise 7.7.13 Try the sin function on various values, including 0, 1, pi,
(/ pi 2), (/ pi 3), (/ pi 6), etc.
Compare the results of
(sin (sqrt something))

with
(sqrt (sin something))

by plugging in various numbers for something.

Exercise 7.7.14 Develop a function at-most-10 that takes in a number and returns
either that number or 10, whichever is less.

Hint: Use the built-in function min (read about it in the Help Desk). While you’re at
it, also look up the max and abs functions.

Exercise 7.7.15 Develop a function named celsius->kelvin that takes in a tem-
perature measurement in Celsius, and returns the corresponding temperature in Kelvin.

Hint: A degree Kelvin is the same size as a degree Celsius, but 0◦K is approximately
−273.15◦C. This gives you at least one example:

(check-within (celsius->kelvin -273.15) 0 0.01)

Come up with at least two more examples of your own, and use the “inventory with
values” technique to figure out the right algebraic expression.

Exercise 7.7.16 Develop a function named fahrenheit->celsius that takes in a
temperature measurement in Fahrenheit, and returns the corresponding temperature in
Celsius.

Hint: The conversion formula is C = (F − 32) · 5/9.

Exercise 7.7.17 Develop a function named fahrenheit->kelvin that takes in a tem-
perature measurement in Fahrenheit, and returns the corresponding temperature in Kelvin.

Hint: You should be able to write this with no numbers or arithmetic operators in the
body of the function, by re-using previously-written functions.
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Exercise 7.7.18 Develop a function named convert-3-digits that takes in the “hun-
dreds”, “tens”, and “ones” digits of a number, in that order, and returns the number itself.
For example,

(convert-3-digits 5 2 8) "should be" 528

Exercise 7.7.19 Develop a function named convert-3-reversed that takes in the
“ones”, “tens”, and “hundreds” digits of a number, in that order, and returns the number
itself. For example,

(convert-3-reversed 7 0 1) "should be" 107

Hint: By re-using a previously-defined function, you should be able to write this in a
line or two, with no numbers and only one arithmetic operator.

Exercise 7.7.20 Develop a function named top-half that takes in an image and
returns the top half of it.

Hint: See Section 3.5 for functions you’ll need.

Exercise 7.7.21 (Thanks to Leon LaSpina for this problem)

Develop a function named splice-pictures that takes in two images and combines
them by splicing the left half of the first together with the right half of the second.

Hint: This will work best if you pick pictures of approximately the same height. Try
the faces of two famous people . . .

Exercise 7.7.22 Develop a function named progress-bar that takes in three numbers
(width, height, and progress) and a string ( color) and produces a horizontal progress
bar as in this example, in which the leftmost progress pixels are solid and the rest are
outlined. You may assume that width, height, and progress are all positive integers, and
that progress is no larger than width.

Exercise 7.7.23 Develop a function bar-graph that takes in four numbers and pro-
duces a bar-graph with four vertical bars (red, blue, green, and yellow respectively) of those
heights.
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Exercise 7.7.24 Develop a function frame-pic that takes in an image, a color name,
and a positive number, and produces that picture surrounded by a “frame” of the specified
color and thickness. For example,

> (frame-pic calendar "blue" 10)

Exercise 7.7.25 My wife wanted to change the background image on her Web page to a
repeating image. But she didn’t want the image to repeat in a monotonous checkerboard
pattern; she wanted each row to be offset from the previous one. Unfortunately, there’s no
HTML command to do that, so I had to build an image which, when repeated horizontally
and vertically, looks like alternating rows offset from one another.

Develop a function offset-tile which takes in an image and produces an image
twice as tall: the top row is the original image, and the bottom row is the image split in
half and put back together in reverse order.

Hint: This is trickier than it seems at first. Be sure to test it on both even-width and
odd-width images, and try putting several copies of the result side by side to make sure
you haven’t created “jaggies”.

This exercise may be easier if you first define two “helper functions” left-half and
right-half. We’ll learn more about helper functions in Chapter 11.
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7.8 Manipulating colors in images

7.8.1 Images, pixels, and colors

Images on a television or computer screen are actually made up of millions of tiny colored
dots, called pixels (short for “picture elements”). Look at such a screen up close with a
magnifying glass, and you may be able to see them. In many computer systems, including
Racket, the color of each dot is represented in RGB (or RGBA) form: three (or four)
numbers representing the amounts of red, green, blue, and perhaps opacity in the dot
(the red, green, blue, and alpha components of the color). Each of these numbers is
conventionally restricted to the integers from 0 to 255. So for example a color with 0 red,
0 green, and 0 blue is black; 255 red, 255 green, and 255 blue is white; 255 red, 0 green,
and 0 blue is pure red; the combination of 100 red, 160 green, and 220 blue is a sort of
light denim-blue; etc.

7.8.2 Building images pixel by pixel

The picturing-programs teachpack includes a function named build3-image which
builds an image pixel by pixel based on where in the picture you are. Its contract is

; build3-image : number(width) number(height)

; function(red-function)

; function(green-function)

; function(blue-function)

; -> image

It takes in the width and height of the desired image, and three functions. Each of
the three functions takes in the x and y coordinates of a pixel; one computes the red
component, one the green component, and one the blue component.

Worked Exercise 7.8.1

Build a rectangle 50 by 50 which shades smoothly from black at the left
edge to red (specifically 250 red, 0 green, 0 blue) at the right edge.

Solution: The only way we know to do this is using build3-image. Obviously the
width and height are both 50, but we’ll need three functions to give it. For now, let’s
name them red-function, green-function, and blue-function (we may come up with
better names later).

Each of the three functions must have the contract

; whatever : number(x) number(y) -> number

Now we need some examples for red-function. It doesn’t care about the y coordinate
given to it, but it should be 0 when the x coordinate is 0, and 250 when the x coordinate
is 50. So
(check-expect (red-function 0 53) 0)

(check-expect (red-function 50 17) 250)

What formula would give us this? Well, there are many ways to do it, but the simplest
is red = 5x. Let’s add another test case in between:

(check-expect (red-function 20 40) 100)
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The skeleton and inventory are straightforward:

(define (red-function x y)

; x a number

; y a number

...

)

And the formula is easy to translate into Racket:

(define (red-function x y)

; x a number

; y a number

(* 5 x)

)

Test this, and it should work.

Now let’s try the green component. We already have the contract. The examples are
easy: no matter what x and y coordinates we plug in, the answer should be 0.

(check-expect (green-function 7 45) 0)

(check-expect (green-function 118 -3) 0)

The skeleton and inventory are exactly the same as for red-function, except for
renaming the function, and the body is even easier:

(define (green-function x y)

; x a number

; y a number

0

)

Test this, and it should work.

The blue function does exactly the same thing ; we don’t even need to write and test
another function for it (although we could if we wished).

We can now build the desired picture as follows:

(build3-image 50 50 red-function green-function green-function)

Try this and see what comes out.

Note that I’ve used green-function as both the green function and the blue function.
This is sorta confusing; it might be better to rename it to say what it does, instead of
how we intend to use it in this problem.

(define ( always-zero x y)

; x a number

; y a number

0

)

(build3-image 50 50 red-function always-zero always-zero)

For that matter, we could rename red-function to better indicate what it does: let’s
call it 5x, because it returns 5 times the x coordinate.
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(define ( 5x x y)

; x a number

; y a number

(* 5 x)

)

(build3-image 50 50 5x always-zero always-zero)

Exercise 7.8.2 Build a rectangle, 50 x 50, which shades smoothly from black at the top-
left corner to purple (i.e. red plus blue) in the bottom-right corner. The top-right corner
should be blue, and the bottom-left corner red.

Hint: You can re-use some previously-defined functions, and you’ll need to write a new
one.

7.8.3 Error-proofing

What happens if you make the image larger than 50 x 50 in the above exercises? 51 is
OK, 52 is OK, but 53 produces an error message because one of the color components is
outside the range from 0 to 255.

SIDEBAR:

You may be wondering why 52 is OK, since 52 ·5 = 260. The reason is that the pixel
positions are numbered from 0 up to one less than the width or height, so the largest
number ever actually given to 5x is 51.

One way to solve this problem is to not allow the numbers to get too big, using min:

; safe-5x : number(x) number(y) -> number (no more than 255)

(check-expect (safe-5x 0 17) 0)

(check-expect (safe-5x 50 27) 250)

(check-expect (safe-5x 51 7) 255)

(check-expect (safe-5x 89 53) 255)

(define (safe-5x x y)

; x a number

; y a number

(min 255 (* 5 x)))

This way if 5x ≤ 255, the answer will be 5x, but if 5x is too large, the function will
return 255. Try this on an image of, say, 100 wide by 75 high. Do you like the result?

Another approach is to multiply by something smaller than 5, e.g. if you wanted a
100x75 image that shades smoothly from black to red, you might want to multiply by
2.55 instead of 5. This also produces error messages, however, because the components of
a color are supposed to be integers. Fortunately, there’s a function real->int that does
what it sounds like: it takes in a real number and produces the closest integer to it. For
example,
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; safe-2.55x : number(x) number(y) -> number

(check-expect (safe-2.55x 0 17) 0)

(check-expect (safe-2.55x 45 27) 115)

(check-expect (safe-2.55x 100 7) 255)

(check-expect (safe-2.55x 189 53) 255)

(define (safe-2.55x x y)

; x a number

; y a number

(min 255 (real->int (* 2.55 x))))

Note that this real->int trick is only necessary if you’re multiplying coordinates by
something other than an integer, since an integer times an integer is always an integer.

Exercise 7.8.3 Is it always clear what “the closest integer” is? Can you think of a
kind of number for which there are two different “closest integers”? Experiment with
real->int to find what it does in this case. Do you have any guesses as to why it works
this way?

Exercise 7.8.4

Build a rectangle, 100 x 100, which shades smoothly from red
at the left edge to green at the right edge.

Exercise 7.8.5

Build a rectangle, 100 x 100, which shades smoothly from black
at the top-left corner to yellow (i.e. red plus green) at the bottom-
right corner. Every point along the diagonal from top-right to
bottom-left should be the same color.

Hint: The formula needs to treat x and y the same, so that increasing either of them
will increase the amount of color. The red and green functions will be the same.

Exercise 7.8.6

Build a rectangle, 100 x 100, which is yellow (i.e. red plus
green) in the top-right and bottom-left corners, and black along
the diagonal from top-left to bottom-right.
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Hint: Use the abs function.

Exercise 7.8.7 Experiment with colors based on

• the square of the x or y coordinate,

• the square root of the x or y coordinate,

• the sine of the x or y coordinate,

• the sum, difference, or product of the x and y coordinates

In all these cases, consider the largest and smallest possible values of the formula, and
scale it and convert to integer so the color values are integers between 0 and 255. It may
also be easier to see what’s happening if you divide the x or y coordinate by something
like 10 or 20 before taking the sine of it.

7.8.4 Building images from other images

There’s also a built-in function map3-image which is similar to build3-image, but builds
a new image from an existing image. Its contract is

; map3-image : function(red-function)

; function(green-function)

; function(blue-function)

; image -> image

That is, it takes in three functions and an image, and produces a new image. Each of
the three functions must have the contract
; whatever : number(x) number(y)

; number(red) number(green) number(blue) -> number

The first two parameters are the x and y coordinates, as before. The third, fourth, and
fifth are the red, green, and blue components of the pixel at that location in the original
picture.

Worked Exercise 7.8.8 Choose an interesting picture (preferably a photograph)
and build a version of it with all the red removed, leaving only the green and blue
components.

Solution: Obviously, we’ll need to call map3-image, which means we need three functions
to give it. Let’s call them red-function, green-function, and blue-function for now.
All three have the contract
; whatever : number(x) number(y)

; number(red) number(green) number(blue) -> number
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The red function is easy: no matter what x, y, or the old color are, it should return
0:
(check-expect (red-function 10 20 30 40 50) 0)

(check-expect (red-function 1000 100 250 125 0) 0)

(define (red-function x y red green blue)

; x a number

; y a number

; red a number

; green a number

; blue a number

0)

The green function simply returns the same amount of green as before:

(check-expect (green-function 10 20 30 40 50) 40)

(check-expect (green-function 1000 100 250 125 0) 125)

(define (green-function x y red green blue)

; x a number

; y a number

; red a number

; green a number

; blue a number

green)

and the blue function is similar, but returns the same amount of blue as before (left as
an exercise).

Once all three of these are tested, we can simply say

(map3-image red-function green-function blue-function my-picture)

to get the desired result.

Exercise 7.8.9 Define a function remove-red that takes in an image and returns the
same image with all the red removed.

Hint: For this exercise, and most of the exercises in this section, there is no easy way to
build “the right answer” other than the function itself. So I suggest describing the right
answer in English, rather than using check-expect. You still need to write test cases,
you just need to check them by eye rather than relying on check-expect.

Exercise 7.8.10 Define a function swap-red-blue that takes in an image and returns
the same image with the red and blue components reversed: wherever there was a lot of
red, there should be a lot of blue, and vice versa.

Exercise 7.8.11 Define a function convert-to-gray that takes in an image and re-
turns the same image in gray-scale. That is, every pixel should have red, green, and blue
components equal to one another. However, the total amount of color at each pixel should
be roughly the same as the total amount of color at that point in the original picture.

Exercise 7.8.12 Define a function apply-blue-gradient that takes in an image and
returns an image with the same red and green components, but with the blue component
equal to the y coordinate (so none at the top and the most at the bottom).
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Hint: Test your program with images of a variety of sizes, including some that are more
than 255 pixels high. (It would be nice to have this function always reach full blue just

at the bottom of the image, regardless of image height, but that requires some techniques
you don’t know yet; we’ll see how in Chapters 27 and 28.)

Exercise 7.8.13 Make up some other cool tricks to do with images and their pixels. Go
wild.

7.8.5 A sneak preview

It’s sort of inconvenient having to write three separate functions for the red, green, and
blue components of the resulting picture (either for build3-image or for map3-image).
There’s a function named build-image: where build3-image takes in three functions
that return the red, green, and blue components of a pixel, build-image takes in one
function that returns a whole color (with make-color).

Exercise 7.8.14 Re-write some of exercises 7.8.1 through 7.8.7 using build-image

instead of build3-image.

There’s also a function map-image which takes in only one function rather than three.
But that function in turn takes in a color rather than three numbers, so you can’t really
use it until you’ve learned in Chapter 20 how to take colors apart.

7.8.6 A problem with bit-maps

The build3-image and map3-image functions produce an image in a form called a bit-
map (or, more precisely, a pixel-map). Such images display very nicely “as is”, but if
you try to enlarge them or rotate them, the results often don’t look very good. For ex-
ample, suppose my-picture was a picture you had created in one of these ways. Then
rotate 15 my-picture, or scale 5 my-picture, may well have “jaggies” — visibly
jagged, “stairstep” edges that wouldn’t happen if you just scaled or rotated a pure geo-
metric shape like a triangle.

Exercise 7.8.15 Develop a function bitmapize that takes in a picture and, using
map3-image, returns an image with exactly the same colors.

Compare the results of

(bitmapize (scale 5 (triangle 10 "solid" "blue")))

(scale 5 (bitmapize (triangle 10 "solid" "blue")))

Which one looks smoother? Why?

The moral of the story is that if you’re going to do bitmap operations (such as
map3-image), they should be ideally done after scaling.

7.9 Randomness

If you were writing a video game, you probably wouldn’t want things to always play out
the same way; you’d want to give the game a certain amount of unpredictability. Likewise,
people doing computer simulations of complex systems like traffic patterns, economics,
aerodynamics, and drug interactions may want to include some unpredictable events in
their simulations.
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In Racket, as in most programming languages, this is done with the help of a built-in
function called a random number generator.3 There’s a Racket function named random

that takes in a positive integer and returns a “randomly” chosen integer, at least zero
and less than the given integer. Here’s a sample interaction:

> (random 10)

6

> (random 10)

4

> (random 10)

0

> (random 10)

3

> (random 10)

7

> (random 10)

4

> (random 10)

2

The answers can be anything from 0, 1, . . . 9 (10 choices). In general, the number of
possible answers is equal to the argument of random. Try the random function several
times each, on several different arguments.

7.9.1 Testing random functions

Since random produces an unpredictable result, it’s difficult to write test cases for func-
tions that use it. If we write something like

(check-expect (random 10) 4)

it will fail 90% of the time. For that matter, if we write

(check-expect (random 10) (random 10))

it will still fail 90% of the time. (Why?)
One answer is to use "should be" and an English-language description of what’s a

“reasonable” answer, e.g. "should be an integer from 0 through 9". Since random-
valued functions may return different answers each time you call them on the same input,
make sure to test them several times interactively : if you expect different answers each
time, but you actually get the same answer each time, or if you expect several equally-
likely answers but in fact one answer is much more common than another, something may
be wrong.

Another way is to use one of check-expect’s cousins, check-member-of and
check-range. check-member-of takes three or more arguments, and checks whether
the first matches any of the remaining ones:

(check-member-of (random 6) 0 1 2 3 4 5)

If you’re calling random with a large argument, you probably don’t want to type in all
the possible answers, so check-range takes in three numbers and checks that the first is
between the second and third (inclusively — that is, it’s allowed to be exactly the second
or the third):

3Most “random number generators” don’t produce really random numbers, but rather a predictable

sequence of numbers that look random unless you know the formula that is used to produce them.
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(check-range (random 1000) 0 999)

The check-member-of and check-range functions are more convenient to use than
“should be”, because you don’t have to look at the answers yourself. However, they don’t
help you spot the kind of mistake described above, where a function that’s supposed to
be random actually produces the same answer every time, or produces answers with the
wrong probabilities. So even if you decide to use check-member-of or check-range, you
should still have a few “should be”-style tests so you can see whether you’re actually
getting different answers.

Even with check-member-of and check-range, it’s harder to test a function with
random behavior than one that’s predictable. So as a general strategy, it’s best to make
as much as possible of the program predictable. If a program involves a random number,
but this same random number is used in several places, it’s a good idea to generate the
random number once, then pass it to a predictable “helper” function that does all the
non-random work. You can test this “helper” function just as you usually would, because
it doesn’t have any randomness in it.

7.9.2 Exercises on randomness

Exercise 7.9.1 Develop a function named random-digit that returns one of the in-
tegers 0, 1, . . . 9, chosen at random.

Hint: This function doesn’t depend on a parameter, but DrRacket’s Beginner Lan-
guage won’t let you write a function without a parameter, so have your function take in
something and ignore it.

Exercise 7.9.2 Develop a function named roll-die that returns an integer randomly
chosen from 1 to 6 inclusive — no zeroes, no 7’s.

Hint: As before, the function should take a dummy parameter. There are 6 possible
answers; how do you make sure that the function never returns 0, but does return 6 some
of the time?

Exercise 7.9.3 Develop a function named two-dice that acts like rolling two 6-sided
dice and counting the total number of dots.

Hint: As before, give it a dummy parameter. Note that the possible answers are 2
through 12, but they’re not equally likely: 7 should come up much more often than 2 or
12. How can you test this?

Exercise 7.9.4 Develop a function named random-picture that takes in a width and
a height, and produces a rectangle that size and shape, in which each pixel is a random
color (that is, for each pixel, the red, green, and blue components are each chosen ran-
domly). Note: I’m not asking you to pick a random color, then make a rectangle of that
color; I want each pixel to be chosen at random separately.
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7.10 Review of important words and concepts

Racket provides all the usual arithmetic operators: +, -, *, /, sqrt, etc. They obey the
same syntax rule as everything else in Racket:

( function-name argument ...)

In other words, they are prefix operators: we write them before whatever they’re supposed
to work on. This may feel unnatural for people accustomed to the infix operators we
learned in grade school, but in many ways Racket’s syntax is simpler, more consistent, and
more flexible; for example, there is no need to memorize precedence rules like PEMDAS,
because everything is parenthesized.

Racket distinguishes among different kinds of numbers: integers, fractions, inex-
act numbers and complex numbers. When testing a function with inexact results, use
check-within rather than check-expect.

Variables and functions can have numeric values, just as they can have image values.
The process of defining them is almost exactly as before, except that it’s usually easier
to construct “right answers” to function examples. There are a few predefined variables
in Racket, notably pi and e, to stand for special numeric values.

Racket, like most programming languages, provides a random number generator, which
produces (mostly-)unpredictable numbers in a specified range. Since random-valued func-
tions are unpredictable, you can’t test them using check-expect, but you can specify in
English what the allowable values are, or you can use check-member-of or check-range.
Be sure to test such functions several times, both with checking functions and with “should
be”.

7.11 Reference: Built-in functions on numbers

In this chapter we’ve introduced a number of functions, many of which you’ve been using
for years:

• +, which takes two or more parameters

• −, which takes one or more parameters

• ∗, which takes two or more parameters

• /

• add1

• sub1

• sqrt

• min

• max

• abs

• sin

• quotient

• remainder
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• random

• pi, which is actually a built-in variable, not a function.

• check-member-of

• check-range

• build3-image

• build-image

• map3-image


